3.7.88 \(\int \frac {\sqrt {d+e x}}{(a+c x^2)^{3/2}} \, dx\) [688]

Optimal. Leaf size=298 \[ \frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \]

[Out]

x*(e*x+d)^(1/2)/a/(c*x^2+a)^(1/2)-EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1
/2)*c^(1/2)))^(1/2))*(e*x+d)^(1/2)*(c*x^2/a+1)^(1/2)/(-a)^(1/2)/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-
a)^(1/2)+d*c^(1/2)))^(1/2)+d*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c
^(1/2)))^(1/2))*(c*x^2/a+1)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/(-a)^(1/2)/c^(1/2)/(e*x+d)^
(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 298, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {751, 12, 858, 733, 435, 430} \begin {gather*} \frac {d \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} F\left (\text {ArcSin}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {d+e x}}-\frac {\sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\text {ArcSin}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]

[Out]

(x*Sqrt[d + e*x])/(a*Sqrt[a + c*x^2]) - (Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*
x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[
c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (d*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/
a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*S
qrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 751

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x)^m*((a + c*x^2)^(p +
1)/(2*a*(p + 1))), x] + Dist[1/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(d*(2*p + 3) + e*(m + 2*p + 3)*x)*(a + c*x
^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (LtQ[m, 1
] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right )^{3/2}} \, dx &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\int \frac {e x}{2 \sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {e \int \frac {x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{2 a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx}{2 a}+\frac {d \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{2 a}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\left (\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (d \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}}\\ &=\frac {x \sqrt {d+e x}}{a \sqrt {a+c x^2}}-\frac {\sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {d \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 11.39, size = 408, normalized size = 1.37 \begin {gather*} \frac {\sqrt {d+e x} \left (x-\frac {e \left (a+c x^2\right )}{c (d+e x)}-\frac {i \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} E\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{e}+\frac {\sqrt {a} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} F\left (i \sinh ^{-1}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{\sqrt {c} \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{a \sqrt {a+c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/(a + c*x^2)^(3/2),x]

[Out]

(Sqrt[d + e*x]*(x - (e*(a + c*x^2))/(c*(d + e*x)) - (I*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[(e*((I*Sqrt[a])/S
qrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x]*EllipticE[I*ArcSinh[Sqr
t[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/e + (Sqrt[
a]*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sqrt[d + e*x
]*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d +
I*Sqrt[a]*e)])/(Sqrt[c]*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]])))/(a*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(648\) vs. \(2(238)=476\).
time = 0.45, size = 649, normalized size = 2.18

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {\left (c e x +c d \right ) x}{a c \sqrt {\left (x^{2}+\frac {a}{c}\right ) \left (c e x +c d \right )}}-\frac {e \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \EllipticE \left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, \EllipticF \left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{a \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(384\)
default \(\frac {\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}\, \left (\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}+\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c \,d^{2}-\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) \sqrt {-a c}\, d e -\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{2}+x^{2} c \,e^{2}+c d e x \right )}{c e \left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right ) a}\) \(649\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+
c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2
),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^2+(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a
*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)
*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c*d^2-(-(e*x+d)*c/((-a*c)^(
1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*
d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2)
)*(-a*c)^(1/2)*d*e-(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*
((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^
(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*e^2+x^2*c*e^2+c*d*e*x)/c/e/(c*e*x^3+c*d*x^2+a*e*x+a*d)/a

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x*e + d)/(c*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.35, size = 210, normalized size = 0.70 \begin {gather*} \frac {{\left (3 \, \sqrt {c x^{2} + a} \sqrt {x e + d} c x e + {\left (c d x^{2} + a d\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right ) + 3 \, {\left (c x^{2} + a\right )} \sqrt {c} e^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right )\right )\right )} e^{\left (-1\right )}}{3 \, {\left (a c^{2} x^{2} + a^{2} c\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

1/3*(3*sqrt(c*x^2 + a)*sqrt(x*e + d)*c*x*e + (c*d*x^2 + a*d)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*(c*d^2 -
3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9*a*d*e^2)*e^(-3)/c, 1/3*(3*x*e + d)*e^(-1)) + 3*(c*x^2 + a)*sqrt(c)*e^(3/2)
*weierstrassZeta(4/3*(c*d^2 - 3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9*a*d*e^2)*e^(-3)/c, weierstrassPInverse(4/3*(
c*d^2 - 3*a*e^2)*e^(-2)/c, -8/27*(c*d^3 + 9*a*d*e^2)*e^(-3)/c, 1/3*(3*x*e + d)*e^(-1))))*e^(-1)/(a*c^2*x^2 + a
^2*c)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d + e x}}{\left (a + c x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+a)**(3/2),x)

[Out]

Integral(sqrt(d + e*x)/(a + c*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(x*e + d)/(c*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {d+e\,x}}{{\left (c\,x^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(a + c*x^2)^(3/2),x)

[Out]

int((d + e*x)^(1/2)/(a + c*x^2)^(3/2), x)

________________________________________________________________________________________